常见排序算法

常见时间复杂度之间的关系

O(1) < O(logn) < O(n) < O(nlogn) < O(n2) < O(n3) < O(2n) < O(n!) < O(nn)

排序算法的稳定性

稳定性:稳定排序算法会让原本有相等键值的纪录维持相对次序。

冒泡排序

冒泡排序算法的运作如下:

  1. 比较相邻的元素。如果第一个比第二个大(升序),就交换他们两个。
  2. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。
  3. 针对所有的元素重复以上的步骤,除了最后一个。
  4. 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
    1
    2
    3
    4
    5
    6
    def bubble_sort(alist):
    for j in range(len(alist)-1,0,-1):
    # j表示每次遍历需要比较的次数,是逐渐减小的
    for i in range(j):
    if alist[i] > alist[i+1]:
    alist[i], alist[i+1] = alist[i+1], alist[i]

时间复杂度

  • 最优时间复杂度:O(n) (表示遍历一次发现没有任何可以交换的元素,排序结束。)
  • 最坏时间复杂度:O(n2)
  • 稳定性:稳定

    选择排序

    选择排序算法的运作方式

    (Selection sort)是一种简单直观的排序算法。它的工作原理如下。
  • 首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置
  • 然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾(第二个位置)。
  • 以此类推,直到所有元素均排序完毕。
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    def selection_sort(alist):
    n = len(alist)
    # 需要进行n-1次选择操作
    for i in range(n-1):
    # 记录最小位置
    min_index = i
    # 从i+1位置到末尾选择出最小数据
    for j in range(i+1, n):
    if alist[j] < alist[min_index]:
    min_index = j
    # 如果选择出的数据不在正确位置,进行交换
    if min_index != i:
    alist[i], alist[min_index] = alist[min_index], alist[i]

时间复杂度

  • 最优时间复杂度:O(n2)(发现没有可以和第一个交换的,但不确定后面的顺序,依然得继续)
  • 最坏时间复杂度:O(n2)
  • 稳定性:不稳定(考虑升序每次选择最大的情况)

插入排序

(英语:Insertion Sort)是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。

1
2
3
4
5
6
7
def insert_sort(alist):
# 从第二个位置,即下标为1的元素开始向前插入
for i in range(1, len(alist)):
# 从第i个元素开始向前比较,如果小于前一个元素,交换位置
for j in range(i, 0, -1):
if alist[j] < alist[j-1]:
alist[j], alist[j-1] = alist[j-1], alist[j]

时间复杂度

  • 最优时间复杂度:O(n) (升序排列,序列已经处于升序状态)
  • 最坏时间复杂度:O(n2)
  • 稳定性:稳定

快速排序

快速排序(英语:Quicksort),又称划分交换排序(partition-exchange sort)

  • 通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小
  • 然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    def quick_sort(alist, start, end):
    """快速排序"""

    # 递归的退出条件
    if start >= end:
    return

    # 设定起始元素为要寻找位置的基准元素
    mid = alist[start]

    # low为序列左边的由左向右移动的游标
    low = start

    # high为序列右边的由右向左移动的游标
    high = end

    while low < high:
    # 如果lowhigh未重合,high指向的元素不比基准元素小,则high向左移动
    while low < high and alist[high] >= mid:
    high -= 1
    # 将high指向的元素放到low的位置上
    alist[low] = alist[high]

    # 如果lowhigh未重合,low指向的元素比基准元素小,则low向右移动
    while low < high and alist[low] < mid:
    low += 1
    # 将low指向的元素放到high的位置上
    alist[high] = alist[low]

    # 退出循环后,lowhigh重合,此时所指位置为基准元素的正确位置
    # 将基准元素放到该位置
    alist[low] = mid

    # 对基准元素左边的子序列进行快速排序
    quick_sort(alist, start, low-1)

    # 对基准元素右边的子序列进行快速排序
    quick_sort(alist, low+1, end)

时间复杂度

最优时间复杂度:O(nlogn)
最坏时间复杂度:O(n2)
稳定性:不稳定
从一开始快速排序平均需要花费O(n log n)时间的描述并不明显。但是不难观察到的是分区运算,数组的元素都会在每次循环中走访过一次,使用O(n)的时间。在使用结合(concatenation)的版本中,这项运算也是O(n)。

在最好的情况,每次我们运行一次分区,我们会把一个数列分为两个几近相等的片段。这个意思就是每次递归调用处理一半大小的数列。因此,在到达大小为一的数列前,我们只要作log n次嵌套的调用。这个意思就是调用树的深度是O(log n)。但是在同一层次结构的两个程序调用中,不会处理到原来数列的相同部分;因此,程序调用的每一层次结构总共全部仅需要O(n)的时间(每个调用有某些共同的额外耗费,但是因为在每一层次结构仅仅只有O(n)个调用,这些被归纳在O(n)系数中)。结果是这个算法仅需使用O(n log n)时间。

希尔排序

希尔排序的基本思想是:将数组列在一个表中并对列分别进行插入排序,重复这过程,不过每次用更长的列(步长更长了,列数更少了)来进行。最后整个表就只有一列了。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
def shell_sort(alist):
n = len(alist)
# 初始步长
gap = n / 2
while gap > 0:
# 按步长进行插入排序
for i in range(gap, n):
j = i
# 插入排序
while j>=gap and alist[j-gap] > alist[j]:
alist[j-gap], alist[j] = alist[j], alist[j-gap]
j -= gap
# 得到新的步长
gap = gap / 2

时间复杂度

  • 最优时间复杂度:根据步长序列的不同而不同
  • 最坏时间复杂度:O(n2)
  • 稳定性:不稳定

归并排序

归并排序是采用分治法的一个非常典型的应用。归并排序的思想就是先递归分解数组,再合并数组。

将数组分解最小之后,然后合并两个有序数组,基本思路是比较两个数组的最前面的数,谁小就先取谁,取了后相应的指针就往后移一位。然后再比较,直至一个数组为空,最后把另一个数组的剩余部分复制过来即可。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
def merge_sort(alist):
if len(alist) <= 1:
return alist
# 二分分解
num = len(alist)/2
left = merge_sort(alist[:num])
right = merge_sort(alist[num:])
# 合并
return merge(left,right)

def merge(left, right):
'''合并操作,将两个有序数组left[]和right[]合并成一个大的有序数组'''
#left与right的下标指针
l, r = 0, 0
result = []
while l<len(left) and r<len(right):
if left[l] < right[r]:
result.append(left[l])
l += 1
else:
result.append(right[r])
r += 1
result += left[l:]
result += right[r:]
return result

时间复杂度

  • 最优时间复杂度:O(nlogn)
  • 最坏时间复杂度:O(nlogn)
  • 稳定性:稳定

二分查找

二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表

1
2
3
4
5
6
7
8
9
10
11
12
def binary_search(alist, item):
if len(alist) == 0:
return False
else:
midpoint = len(alist)/2
if alist[midpoint]==item:
return True
else:
if item<alist[midpoint]:
return binary_search(alist[:midpoint],item)
else:
return binary_search(alist[midpoint+1:],item)

时间复杂度

  • 最优时间复杂度:O(1)
  • 最坏时间复杂度:O(logn)
-------------end-------------
0%